
MANUAL DE INSTALACIÓN

PARA TUBERÍAS CORRUGADAS

DE PEAD TIGRE-ADS

Ref. Instalación de Tuberías Corrugadas Doble Pared "DrenPro y SaniPro" para usos de Sistemas de Drenaje, Pluvial y Sanitario

Desde los inicios al introducir al mercado Norteamericano la primera tubería corrugada de polietileno de alta densidad (PEAD) - ADS ha estado continuamente desarrollando productos de drenaje que han marcado un referente en la industria.

Este innovador producto, desplazó a muchos materiales de la industria dedicados al drenaje. Al combinar la integridad y resistencia estructural de la tubería corrugada de PEAD, obtuvo una mejor conductibilidad hidráulica. ADS fue la primera compañía en suministrar una alternativa importante al concreto y acero.

Luego el tubo de ADS sufrió una importante avance, mejorando notablemente su desempeño, introduciendo en aquel entonce al mercado pluvial, la tubería N-12 "doble pared". Este avance fue desarrollado mediante la combinación de las más alta materias primas y un diseño innovador, de lograr una unión con gran eficiencia hermetica, la que evita el ingreso de finos al sistema de tubería y filtraciones de agua. Este resultado es gracias a la unión campana - espiga que tanto ha caracterizado a ADS en EE.UU. y Tigre-ADS en América Latina.

En agosto del 2009, la compañía Tubos y Plásticos ADS Chile Limitada y Tigre Chile S.A., empresas líderes en la fabricación de tuberías plásticas, consolidaron una alianza estratégica a través de la formación en Chile de una nueva sociedad denominada TUBOS Y PLÁSTICOS TIGRE-ADS DE CHILE LIMITADA.

El objetivo de esta alianza estratégica es ofrecer a todos sus clientes una gama más amplia en productos y accesorios de tuberías corrugadas de PEAD, prestando un servicio de excelencia y soluciones integrales tanto en Chile como en toda Sudamérica.

Índice

1- Introducción	
2- Pre-construcción	2
2.1 Precauciones	2
2.2 Pedidos	2
2.3 Certificado de Calidad	3
2.4 Recepción y Descarga	3
2.5 Almacenamiento	4
3- Instalación	6
3.1 Alineamiento y Pendiente	6
3.2 Excavación de Zanja	6
3.3 Extracción de Aguá	9
3.4 Uniones	9
3.4.1 Uniones Tipo Abrazadera	
3.4.2 Uniones Herméticas a los Finos (DrenPro One®)	10
3.4.3 Uniones Herméticas al Agua (DrenPro®)	10
3.5 Ensamble de uniones	
3.6 Métodos de Ensamble	13
3.7 Rendimientos de Instalación	18
3.8 Instalaciones Curvilíneas	19
3.9 Conexiones a Cámaras	20
4. Materiales de Relleno	22
4.1 Cimentación o Sello	
4.2 Encamado	25
4.3 Acostillado o Relleno Lateral	26
4.4 Relleno Inicial	27
4.5 Relleno Final	
5. Cargas Vehiculares y de Construcción	
6. Profundidades de Instalación Máxima	
7. Accesorios	
8. Conexiones y Reparación en Obra	30
8.1 Reparación de Sistemas Herméticos Agregados Gruesos	31
8.1 Reparación de Sistemas Herméticos al Agua	31
9. Chequeos Post-Instalación	
9.1 Inspección Visual	
9.2 Infiltración / Exfiltración	
9.3 Pruebas a Baja Presión de Aire	34
9.4 Pruebas de Déformación	
10. Servicio Asistencia Técnica de Tigre-ADS	
11. Normas y Especificaciones	35
12 Anéndice	38

1- Introducción

El objetivo de este manual es proporcionar guías para la adecuada instalación de tubería corrugada de polietileno de alta densidad (PEAD).

Tigre - ADS es muy utilizadada en aplicaciones de drenaje pluvial, sanitario, caminero y similares. Este manual no pretende reemplazar las normas industriales o especificaciones de los proyectos, pero sí proporcionar directrices basándose en nuestra experiencia, investigaciones y ensayos para un adecuado desempeño del producto.

Se reconoce que las prácticas de instalación varían según la zona geográfica, sin embargo, los siguientes parámetros son en general aplicables a la mayoría de las instalaciones.

2- Pre-Construcción

2.1 Precauciones

Las regulaciones de Seguridad del Trabajo están definidas en los procesos constructivos propios de cada faena y son fiscalizados por el prevencionista de riesgo de la misma.

2.2 Pedidos

La tubería Tigre-ADS debe ser solicitada a un ejecutivo de ventas o distribuidor autorizado de Tigre - ADS.

Nuestros ejecutivos están capacitados para dar apoyo a aconcejar cual es su mejor opción según sea la solución. Además este equipo es el encargado de suministrarle la cotización y hacer la recepción de una orden, asegurando que el pedido tanto tuberías, conexiones y piezas especiales, sean las cantidades que realmente usted necesita.

2.3 Certificado de Calidad

Cualquier certificado que nuestros clientes necesiten sobre nuestros productos, debe ser solicitado en el momento de realizar el pedido al representante de Tigre - ADS, el que entregará en el menor tiempo posible junto a la tubería solicitada.

2.4. Recepción y Descarga en Obra

Al recibir las tuberías y conexiones Tigre - ADS en el sitio de la obra, es importante revisar si las cantidades anotadas en la guía de despacho, las cuales deberán coincidir con los productos entregados. También se debe revisar que los productos adquiridos a nuestra compañía, lleve todos sus empaques (cuando sea requerido), y que las tuberías, así como sus componentes, se encuentren sin daños ocasionados por el transporte.

Cualquier discrepancia o daño, debe ser especificado a la hora de su recepción y notificar de manera inmediata a su proveedor local.

La mayoría de las entregas llegan en camiones de plataforma abierta o caja cerrada. Sin embargo, para las tuberías de mayores diámetros y algunas entregas especiales, los remolques de plataforma baja pueden ser una opción.

La tubería está diseñada para soportar el manejo normal de la obra y puede ser fácilmente descargada a mano (diámetros hasta 450mm) o con equipo (600mm hasta 1500mm) haciendo uso de bandas de nylon de 50mm o 75mm, o estrobos de plástico. El uso de cualquier material metálico como cadenas o cables de

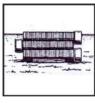
acero NO se recomienda ya que pueden dañar la tubería.

Para evitar daños NO se debe dejar caer la tubería. Adicionalmente, las cintas o bandas de amarre no deben ser removidas hasta que la tubería haya sido asegurada para prevenir el deslizamiento o caída de la misma.

La descarga siempre deberá ser supervisada cuando se usan tenazas de elevación o bandas de nylon.

Cuando se usen bandas de nylon, se recomienda sujetar la tubería en dos puntos de apoyo.

Diámetro nominal	Peso Kg./tira de 6m	Método recomendado para manejo de tubería	Capacidad estimada de transporte (tubos/rampla de 6m)
75 mm	3 kg	Manual	672
100 mm	4 kg	Manual	432
150 mm	8 kg	Manual	192
200 mm	14 kg	Manual	108
250 mm	21 kg	Manual	72
300 mm	29 kg	Manual	48
375 mm	41 kg	Manual	30
450 mm	59 kg	Manual	20
600 mm	99 kg	Equipo	12
750 mm	144 kg	Equipo	8
900 mm	170 kg	Equipo	5
1000 mm	217 kg	Equipo	4
1200 mm	300 kg	Equipo	4
1500 mm	383 kg	Equipo	1


2.5 Almacenamiento

Para asegurar que los productos Tigre-ADS no sufran ningún daño durante el almacenaje, recomendamos seguir las siquientes pautas:

- Almacene la tubería tan cerca como cadenas o cables de acero NO se recomienda ya que pueden dañar la Almacene la tubería tan cerca como sea posible de su localización final, pero lejos del tráfico y actividades de construcción.
- La tubería debe ser almacenada en un terreno plano y en caso de que se desee apilar, se debe bloquear a dos metros de cada extremo en ambos lados de la pila para evitar deslizamientos.

IMPORTANTE

- Las pilas deberán ser en forma de pirámide, evitando apilar la tubería a más de 1.80 m de alto.
- La tubería apilada debe ser colocada con las campanas alternadas en capas sucesivas. Las campanas deben sobresalir a la capa inferior para evitar la deformación y daño.
- La envoltura protectora (cinta blanca o verde) sobre las gomas o empaques del extremo de la espiga del tubo NO debe ser retirada hasta el momento de la instalación de la tubería.

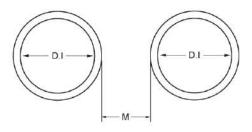
- Lubricante, acoples y accesorios deben ser almacenados siempre en lugares seguros e idealmente no expuestos al sol.
- Para evitar daños a la campana o espiga cuando se mueva la tubería, no arrastre o golpee los extremos de esta contra el suelo u otra superficie.

3- Instalación

3.1 Alineamiento y Pendiente

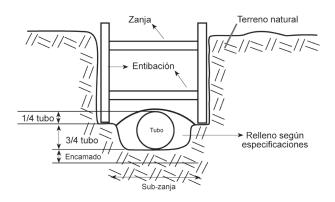
Los sistemas de tubería para drenaje de aguas lluvias, sanitario o alcantarillas de carreteras están diseñados para proporcionar capacidad hidráulica basándose en el tamaño e inclinación de la tubería. El alineamiento o la línea del tubo es la localización horizontal del mismo, mientras que la pendiente es la inclinación vertical del tubo. Para que un sistema de drenaje de aguas lluvia, sanitario o carretero funcione como se diseñó, es importante instalar el tubo con la línea y pendiente adecuados.

El alineamiento se determina mediante un levantamiento topográfico del sitio. Una vez que la zanja ha sido excavada a lo largo del alineamiento horizontal, se debe colocar el material de soporte (encamado) con el espesor adecuado. La parte superior del material de soporte se debe ajustar para permitir acomodar la diferencia entre el nivel de arrastre del trazo (línea de flujo) y el espesor de la pared del perfil de tubo (diferencia entre diámetro externo y diámetro interno) calculando siempre la pendiente del proyecto.


3.2 Excavación de Zanja

Las referencias para los procedimientos de excavación de zanjas están en la Sección 30 de AASHTO y en la Norma ASTM D2321. Ambas especificaciones proporcionan guías a seguir para determinar el ancho de las zanjas, aplicables a una variedad de condiciones de instalación. El ancho de la zanja puede variar de acuerdo a la calidad del suelo in-situ, los materiales de relleno, los niveles de compactación y las cargas. La zanja siempre debe ser lo suficiente ancha para permitir una adecuada colocación y compactación del relleno alrededor del tubo de acuerdo a las especificaciones del proyecto.

En general, la siguiente tabla proporciona anchos mínimos recomendados para la mayoría de las instalaciones estándar, sin embargo, el ingeniero de diseño puede modificar el ancho de zanja basándose en una evaluación de los materiales in-si tu, su calidad, nivel de compactación que se utilizará.


Diámetro Nominal (mm)	75	100	150	200	250	300	375	450	600	750	900	1000	1200	1500
Ancho de Zanja (mm)	532	520	576	632	690	767	856	981	1196	1425	1605	1735	2009	2405

- Si el material del suelo natural puede migrar al relleno por ser fino, utilizar geotextil para separarlo del relleno.
- En el caso de instalación de tuberías para una compactación adecuada.

≤ 600mm Diámetro interno: M = 300mm > 600mm Diámetro interno: M = 1/2 D.l.

- Para instalaciones con terraplén de proyección positiva, el material del mismo debe ser colocado y compactado hasta un mínimo de 30 cm por encima de la altura proyectada para la clave del tubo y la zanja excavada dentro del terraplén.
- La excavación se debe realizar en los suelos existentes con paredes laterales razonablemente verticales hasta la parte superior del tubo.
- Cuando, debido a las profundidades de excavación o las condiciones del suelo, se requiera apuntalamiento o el uso de paneles o cajas de entibación móviles, se recomienda construir una "sub-zanja" para apoyar el sistema de entibación. La altura de la sub-zanja no debiese ser menor a 3/4 de un diámetro exterior del tubo medido desde el encamado. La sub-zanja permite que no se afecte el relleno ya compactado bajo la entibación a medida que ésta se retire o se traslade. Si no se puede seguir este procedimiento, se debe dejar la entibación en el lugar.

 Idealmente ajustar la longitud del sistema de entibación a la longitud de la tubería. La longitud estándar de la tubería Tigre-ADS es de 6.1 m.

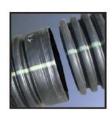
3.3 Extracción de Agua

La presencia de aguas freáticas es un obstáculo para la adecuada colocación y compactación del material de soporte y del relleno. Debido a su bajo peso, la tubería de Tigre-ADS DrenPro® flota en presencia de agua, por lo tanto, es muy importante conservar la zanja seca durante la instalación. Para lograr lo anterior, es necesario la utilización de bombas, punteras, drenes o una cuneta de desviación. Se deberá consultar a un ingeniero especialista para determinar el método más apropiado para el control del agua.

Asimismo, ante la presencia de napa se recomienda encamar con grava o gravilla.

3.4 Uniones

Tigre - ADS ofrece una variedad de opciones en sistemas de unión para satisfacer los requerimientos específicos de cada proyecto. Comúnmente se utilizan tres niveles de hermeticidad de la unión para aplicaciones de drenaje y conducción:


3.4.1 Uniones Tipo Abrazadera:

Existen proyectos donde sólo se desea un sistema de unión sin hermeticidad. Para lograr este tipo de uniones, se pueden utilizar, en tubos de 100mm hasta 1200mm de diámetro coples divididos o split couplers, llamados también coples tipo abrazadera.

Estos tipos de coplas se especifican de acuerdo al diámetro nominal de la tubería.

Los lados de esta copla están articulados de manera que pueden abrirse para conectarse fácilmente con lo extremos de los tubos adyacentes, "abrazando" exteriormente la tubería de Tigre-ADS a unir. Existen agujeros en los extremos del cople, los cuales se encuentran divididos y es por allí donde pasarán las amarras de nylon, permitiéndole asegurar la copla a las tuberías, por lo tanto la unión se concreta.

3.4.2 Uniones herméticas a los finos:

Las uniones herméticas a los finos se utilizan en suelos con un alto porcentaje de finos y probable presencia de napa freática. Estas uniones están diseñadas de tal manera de evitar la entrada de finos a través de la junta. Generalmente para este tipo de unión se utiliza un diseño de campana y espiga con empaque de goma elastomérica que cumpla con la norma ASTM

F477. Este tipo de unión ha sido sometida a ensayos y pruebas destructivas según lo especifica la norma ASTM D3212, resistiendo un presión de 2 psi, por lo que puede considerar como una unión hermética a los finos. Por lo tanto, La tubería DrenPro[®] de Tigre - ADS, está diseñada para cumplir con los requerimientos de hermeticidad a los finos.

3.4.3 Uniones herméticas al agua:

Las uniones herméticas al agua, para ser consideradas como tal, deben soportar una presión de 10.8 psi en ensayos de laboratorio bajo los requerimientos de la norma ASTM D3212.

Este tipo de uniones fueron diseñadas para evitar tanto la entrada de suelo y aqua exterior como la salida de flujo contenido en el tubo hacia el suelo

circundante de la tubería.entrada de suelo y agua exterior como la salida del flujo transportado en el tubo hacia el suelo circundante de la tubería.

Estas uniones tienen un diseño de campana y espiga o de campana - campana e incluyen uno o dos empaques o gomas elastoméricas de acuerdo a la norma ASTM F447. Los diámetros a partir de los 300 mm cuentan además con bandas de cerámicas de refuerzo en el exterior de sus campanas. Las uniones de la tubería DrenPro[®] satisfacen ampliamente los requerimientos en instalaciones que demandan hermeticidad al agua. Cabe señalar nuestras tuberías salen desde fábrica con las gomas ya instaladas sin que se requiera retirarlas en obra, a no ser, que se dañen y deban ser reemplazadas.

3.5. Ensamble de Uniones

Unión Tipo Abrazadera

Los coples divididos o split coupler se instalan fácilmente colocando de tope los extremos de los tubos a unir sobre el cople abierto, para posteriormente envolver el tubo con la copla. Las amarras de nylon se deben pasar por los agujeros de la copla asegurando la unión de los tubos. Tanto el tubo y el interior del acople deben estar limpios y libres de lodo o arena antes de ser cerrado y asegurado con las amarras.

Unión Campana - Espiga

Para aquellas tuberías con conexión campana-espiga, es fundamental realizar la unión en forma apropiada de modo de asegurar el desempeño especificado para la tubería.

Estas uniones son fácilmente instaladas por medio del siguiente procedimiento:

- Coloque la tubería en la zanja ya sea en forma manual o con el uso de equipos mecánicos.
- Limpie completamente los extremos de la campana y la espiga, asegurándose que estén libres de lodo, arenilla u otras partículas extrañas.
 - Remueva la envoltura protectora del empaque o goma. Si el empaque ha sido removido, asegúrese que la base de colocación esté limpia y reinstálelo
 - estirándolo sobre el tubo y ajústelo. Los empaques deben ser instalados
- con la marca, letras o línea de color enfrentando el acople.

Utilizando un paño o brocha, aplicar lubricante tanto en la campana como en el empaque o goma ubicado en la espiga del tubo. La función principal del lubricante es facilitar las operaciones de deslizamiento y

 acople entre las diferentes piezas y tuberías Tigre - ADS durante su instalación.

Posicionar la espiga dentro de la campana manteniendo el alineamiento de los tubos ya instalados. Cabe señalar que los tubos deben instalarse con las campanas dirigidas hacia aguas arriba y siempre empujar la espiga dentro de la campana, NO la campana dentro de la espiga.

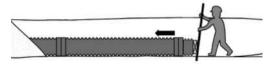
Nota: Tigre - ADS suministra sin costo el lubricante para la instalación de tuberías que usan campana - espiga.

Nunca utilice grasa o aceites de maquinarias de la obra, ya que dañan la goma.

Unión Campana - Espiga

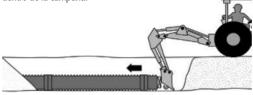
A continuación se anexa tabla de rendimientos referenciales para realizar uniones en tuberías Tigre - ADS DrenPro[®].

Tabla de rendimiento de lubricante Tigre-ADS


Diámetro nominal	Número de uniones por kg de lubricante
75 mm	36
100 mm	33
150 mm	24
200 mm	16
250 mm	11
300 mm	8
375 mm	4
450 mm	4
600 mm	3
750 mm	2
900 mm	2
1000 mm	2
1200 mm	2
1500 mm	1

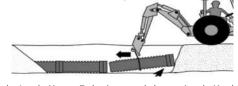
3.6 Métodos de Ensamble

El ensamble de las tuberías Tigre - ADS es muy fácil y muy rápido de realizar. Dependiendo del diámetro se recomiendan distintos métodos de unión, los cuales se detallan a continuación:


 Método de Instalación de Palanca y Chuzo (recomendado para instalación de tuberías de hasta 450mm.

- Colocar un talón de instalación Tigre ADS o elemento hecho in situ dentro de la campana, para no empujar directamente sobre el tubo a insertar y evitar dañar la campana.
- Poner un bloque de madera verticalmente contra el talón.
- Con una barra o chuzo, empujar contra el bloque de madera, y palanquear de manera de empujar el tubo hasta que la inserción se realice en forma adecuada.

Método de Instalación con Excavadora (recomendado para instalación de tuberías desde 600mm).


- Colocar un talón de instalación Tigre ADS o similar dentro de la campana, para no empujar directamente sobre el tubo a insertar y evitar dañar la campana.
- Poner un bloque de madera verticalmente contra el talón.
- Con cuidado empujar la pala de la retroexcavadora contra el bloque de madera hasta que la espiga de la tubería quede inserta adecuadamente dentro de la campana.

Método de Instalación con Excavadora y Eslinga (recomendado para instalación de tuberías desde 600 mm).

 Colocar la cuerda o eslinga alrededor de la tubería. La eslinga debe estar amarrada a la pala de la excavadora.

 El operador del equipo deberá tirar cuidadosamente la eslinga hacia la campana donde será insertado el tubo, hasta que la espiga quede inserta adecuadamente dentro de la campana.

Método de Instalación con Tecles (recomendado para instalación de tuberías desde 450 mm).

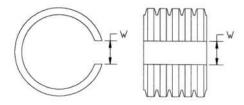
- Colocar de tope la campana y la espiga de los tubos a unir.
- Abrazar ambos tubos con cuerdas, cintas de nylon o eslingas con una "oreja" a la altura de cada costilla de la tubería.
- Colocar un tecle por cada lado de la tubería anclándolo a cada "oreja" ya instalada, y comenzar a ejercer fuerza con ellos en forma paralela, hasta lograr el encaje adecuado de la unión.

Ensamble Adecuado

Para lograr el ensamble adecuado entre las tuberías y asegurar la integridad de la junta utilizando cualquiera de los métodos antes señalados, se debe cuidar que la espiga sea insertada totalmente dentro de la campana. El borde de la campana debe coincidir con una marca (palabra "HOME" o línea) presente en una de las corrugas cercanas del extremo de la espiga de los tubos.

Cuando la tubería cuente con refuerzo de cerámica (cinta de color verde) en su campana, éste siempre debe quedar situado sobre el empaque o goma al realizar la unión.

Puede ocurrir que durante los trabajos en obra existan grandes diferencias de temperatura durante el día.


En el caso que el ensamble de las tuberías se lleve a cabo en horas de alta temperatura, se recomienda realizar el relleno en el contorno de los tubos inmediatamente después de efectuada la unión. De este modo, se evitará una posible contracción del tubo cuando disminuya la temperatura, evitando separaciones excesivas en las uniones.

Fabricación de Talón de Instalación

Para empujar una tubería de campana y espiga a su posición de encaje final, se recomienda utilizar talones de instalación en los casos en que se empuja directamente sobre la campana, para evitar daños a ésta.

Estos talones de instalación pueden ser adquiridos directamente con Tigre-ADS, o bien pueden ser fabricados en obra de la siguiente manera:

- Corte una sección de 5 corrugas de largo de tubería Tigre-ADS. El corte debe hacerse siempre en el valle entre corrugaciones.
- Utilizando una sierra, remover una sección longitudinal de tubería tal como se muestra en la siguiente figura:

 El ancho (W) de la tira a remover dependerá del tamaño de la tubería. La siguiente tabla entrega anchos mínimos recomendados según diámetro.

Diámetro nominal (mm)	250 a 300	375	450	600	a	1200 a 1500
Ancho de tira a romover (cm)	10	13	15	19	26	31

Para usar el talón, comprimir las paredes de éste para ajustar su diámetro externo al diámetro interno de la campana donde será instalado.

Unión de Tuberías con Accesorios

Entre los accesorios ofrecidos por Tigre - ADS se encuentran tees, codos, reducciones, tapones y coplas.

Los fittings conformados (fabricados en taller), pueden ser encontrados en las versiones con extremos campana, espiga, corruga o combinación de éstos. En este caso, el método de unión será el mismo descrito para las tuberías Tigre - ADS.

En el caso de realizar una unión con accesorios inyectados de Tigre - ADS, se debe tomar la precaución de cortar la espiga reducida de la tubería, y realizar la unión con un empaque de valle colocado en el centro de la primera corruga después del corte de la tubería. Los empaques de valle vienen incluídos en el suministro del accesorio de unión.

3.7 Rendimientos de Instalación

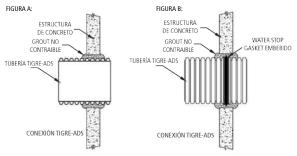
Las tuberías DrenPro[®] de Tigre - ADS son muy fáciles de instalar, por lo tanto, normalmente el rendimiento de instalación dependerá del avance de la excavación y preparación del terreno, ya que el alineamiento, pendiente y el encaje entre las tuberías, sólo toma unos pocos minutos, ya qué la unión campana-espiga es extraordinariamente fácil y rápida de insertar.

Por su bajo peso (ver cuadro página 4), el rendimiento de instalación es muy alto comparativamente con otros materiales ya que normalmente no se requieren equipos mecánicos para su transporte interno en obra o para su instalación propiamente tal.

3.8 Instalaciones Curvilíneas

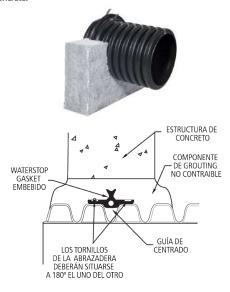
Eventualmente, las tuberías DrenPro HD[®], DrenPro Infra[®] y SaniPro[®] pueden ser colocadas en un alineamiento curvilíneo como una serie de tangentes (secciones rectas) deflectadas horizontalmente en cada junta. Sin embargo, la cantidad de deflexión depende del tipo de junta seleccionada.

- Las juntas campana-espiga para las tuberías DrenPro HD[®], DrenPro Infra[®]
 y SaniPro (campana integrada), pueden ser acomodadas únicamente en
 ángulos de deflexión pequeños, hasta 1,5°.
- Los acoples banda o splits coupler también permitirán pequeños ángulos de deflexión hasta 3°.


- Las uniones con copla campana-campana pueden acomodar un ángulo de deflexión total de hasta 3°.
- Ángulos de deflexión mayores podrían afectar el sello de hermeticidad de la unión.

3.9 Conexiones a Cámaras

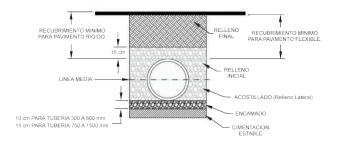
Las cámaras de inspección u otras estructuras de hormigón se utilizan cuando existen cambios en el tipo de material, diámetro, pendiente, dirección del flujo, longitud del tramo, elevación u otros.


Los tipos de unión entre las tuberías Tigre - ADS y estructuras de hormigón pueden ser herméticas a los finos o herméticas al agua.

El tipo de conexión a utilizar estará dado por las especificaciones de proyecto y las regulaciones vigentes.

- Cuando el método de construcción considera vaciado de hormigón in situ, emplear mezcla de hormigón lo suficientemente fluída como para envolver completamente el anillo y contorno de la tubería.
- En el caso de estructuras de hormigón existentes, insertar el tubo en una abertura preparada previamente en la estructura con una sobredimensión de al menos 10 cm y llenar todo el espacio vacío con un buen agente de unión y sello (mortero con expansor o grout).

- Las corrugaciones exteriores del tubo proporcionarán un tope frente al aqua, formando un sistema hermético principalmente a los finos.
- Para obtener mayor hermeticidad, utilice un anillo de estanqueidad para cámaras o Water Stop Gasket Tigre - ADS, diseñado especialmente para uniones herméticas al agua entre tubería corrugada de PEAD y estructuras de concreto.



Nunca deje la campana inserta en la pared de la estructura de concreto. Esta debe ser previamente eliminada. Está permitido que la espiga del tubo quede embebida en el hormigón.

4- Materiales de Relleno

Los materiales de relleno son aquellos usados para el encamado, acostillado y relleno inicial tal como se muestra en la imagen:

Sección de Zanja según ASTM D2321 y Sección 30 de AASHTO.

Las especificaciones de la Sección 30 de AASHTO y ASTM D2321 clasifican los suelos usando la clasifica-ción AASHTO y la Clasificación Unificada de Suelos, respectivamente. A continuación, se describirán los suelos usando la nomenclatura ASTM D2321 con las designaciones de la AASHTO correspondientes.

Clase I - piedra o roca triturada angular, gradación densa o abierta con pocos o sin finos (de 3/4 de pulg. a 1 1/2 pulg. de tamaño).

Clase II - (GW, GP, SW, SP, GW-GC, SP-SM) materiales limpios, de grano grueso, tales como la grava, arenas gruesas y mezclas grava/arena (tamaño máximo de 1 1/2 pulg.). (Clasificaciones AASHTO A1 & A3).

Clase III - (GM, GC, SM, SC) materiales de grano grueso con finos incluyendo gravas o arenas limosas o arcillosas. La grava y arena deben comprender más del 50 por ciento de los materiales clase III (1 1/2 pulg. de tamaño máximo). (Clasificaciones AASHTO A-2-4 & A-2-5).

Clase IV - (ML, CL, MH, CH) materiales de grano fino, tales como arena fina y suelos que contengan 50 por ciento o más de arcilla o limo. Los suelos clasificados como clase IVa (ML o CL) tienen media o baja plasti-cidad y NO son aceptables como materiales de relleno. Los suelos clasificados como clase IVb (MH o CH) tienen alta plasticidad y NO son aceptables como materiales de relleno.

Clase V - (OL, OH, PT) estos materiales incluyen limos y arcillas orgánicas, turba y otros materiales orgánicos. NO son aceptables como materiales de relleno.

Selección de material de relleno

Las recomendaciones de Tigre-ADS se presentan como una guía y no como un substituto de las normas vigentes o del diseñador.

- El material y el nivel de compactación deben estar especificados en los planos. Siempre que estos satisfagan los requerimientos mínimos referidos en la Norma ASTM D2321, los planos y especificaciones de proyecto tienen prioridad.
- Los materiales de relleno deben ser especificados tomando en consideración las cargas de diseño y la clasificación y calidad de los suelos nativos.
- Los materiales de relleno deben ser colocados y compactados con un contenido de humedad óptimo, determinado por análisis previo de un laboratorio de suelos.

- Todos los materiales deben estar libres de terrones o suelo congelado o hielo cuando se coloquen.
- Materiales disponibles en sitio pueden ser aceptables siempre y cuando reúnan los requisitos mínimos de Clasificación según la Norma ASTM D2321 (Clase I, II o III).
- Para instalaciones normales sin cargas vivas o alturas de cobertura profundas, muchos suelos nativos pueden ser útiles. Además, el uso de suelos nativos minimiza el potencial de migración de finos dentro del material de relleno.
- Cuando los suelos nativos no son apropiados como materiales de relleno o para las condiciones de carga, se debe considerar el uso de un material de empréstito.
- Los materiales Clase I pueden ser instalados a volteo alrededor de la tubería.
 Los espacios vacíos deben ser eliminados barretillando por debajo y alrededor de la tubería o por alguna otra técnica.
- Las arenas no cohesivas, mezclas de arena y grava y otros materiales Clase
 II y III deben ser compactados a una densidad Próctor Estándar mínima de
 85% y 90% respectivamente.
- Materiales Clase IV y V NO son aceptables como relleno.
- Cuando el proyecto lo requiera, se puede utilizar suelo-cemento compactado o rellenos fluídos. En este último caso, se deben tomar medidas como anclar la tubería o colocar el relleno fluído en capas, para evitar el desalineamiento o flotación del tubo.

4.1 Cimentación o Sello

- Se debe proporcionar una cimentación estable para asegurar que se obtenga un alineamiento y una pendiente adecuados.
- Las cimentaciones inadecuadas se pueden estabilizar bajo las indicaciones de un mecánico de suelos.
- Las cimentaciones inadecuadas o inestables pueden ser excavadas y reemplazadas con un material de relleno apropiado, colocado en capas de 15 cm.
- Otros métodos de estabilización tales como los geotextiles pueden ser adecuados basándose en el criterio de un ingeniero experto en suelos.

4.2 Encamado

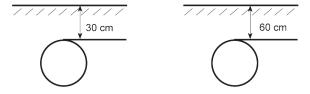
- Se debe proporcionar un encamado estable y uniforme para el tubo.
- Los materiales clase I, II, III son adecuados para usarse como encamado.
- El encamado debe ser compactado a un mínimo de 90% de la densidad próctor estándar.

4.3 Acostillado o Relleno Lateral

 Un adecuado acostillado proporciona la mayor parte de la resistencia y estabilidad del tubo. Se debe tener cuidado de asegurar la colocación y compactación del material del relleno en el acostillado.

- Para tuberías de diámetros mayores a 750 mm, se debe cuidar a mano que los materiales de relleno llenen todos los espacios entre la tubería y la pared de la zanja.
- Los materiales para acostillado pueden ser Clase I, II o III, de acuerdo a lo especificado en los planos.
- El acostillado debe ser colocado y compactado en capas de máximo 40 cm.
 suelto hasta llegar a la línea central horizontal de la tubería o línea media.
- Los rellenos fluídos también son materiales de relleno aceptables. Se deben tener previsiones para evitar la flotación del tubo durante la colocación del relleno fluído.
- Cuando el ensamble de las tuberías se lleve a cabo a altas temperaturas, se recomienda realizar el acostillado y relleno inicial inmediatamente después de efectuada la unión, de manera de evitar posibles contracciones del tubo cuando disminuya la temperatura, que podrían generar una separación excesiva en las uniones.

4.4 Relleno Inicial


- Un buen relleno inicial es fundamental para dar un desempeño estructural adecuado a la tubería
- El relleno inicial se extiende desde la línea media de la tubería hasta un mínimo de 15 cm por encima de la clave del tubo.
- Se pueden usar como relleno inicial materiales Clase I, II o III, cumpliendo lo especificado en los planos.

- Se debe proporcionar una cimentación estable para asegurar que se obtenga un alineamiento y una pendiente adecuados.
- Los materiales Clase I pueden ser instalados a volteo y/o compactados. Los materiales Clase II y III se deben compactar en capas de 15 cm hasta un mínimo de 90% y 85% de la densidad próctor estándar respectivamente, siempre que no contradigan las exigencias del proyecto.
- Los materiales Clase IVa de baja plasticidad (CI-ML) No deben ser utilizados como rellenos iniciales ya que pueden ocasionar de acuerdo a su compresibilidad y expansibilidad asentamientos bruscos al saturarse bajo carga o en estado seco pueden presentar expansión al aumentar su contenido de humedad y dañar la tubería.
- Los materiales Clase IVb arcillas y limos de alta plasticidad y todos los materiales Clase V
 No son recomendados para el relleno inicial.
- Los rellenos fluídos también son materiales de relleno aceptables. Se deben tener previsiones para evitar la flotación del tubo durante la colocación del relleno fluído.

Relleno Final

- Son los planos y especificaciones de proyecto los que determinarán la calidad del material que puede ser usado en el relleno final.
- Muchas veces el material excavado puede ser usado como relleno final.

- En general, la colocación del relleno final debe ser la misma especificada para el terraplén. En caso de no existir alguna especificación, el relleno final puede ser colocado en capas de máximo 30 cm y compactado a un contenido de humedad óptimo hasta una densidad adecuada para evitar el excesivo asentamiento en la superficie.
- Las tuberías en diámetros de 100mm a 1200mm que estén sujetas a cargas tipo AASHTO H-25 requerirán rellenos finales de al menos 15 cm por encima del relleno inicial para cumplir con el recubrimiento mínimo para el tubo, que es de 30 cm.
- Las tuberías de 1500mm de diámetro sujetas a cargas tipo AASHTO H-25 requerirán relleno final de al menos 45 cm para cumplir con el recubrimiento mínimo para el tubo, que es de 60 cm.

Nota: Recubrimientos mínimos mayores pueden ser necesarios cuando existe napa freática, **PARA EVITAR LA FLOTACIÓN**.

5- Cargas vehiculares y de construcción

Las tuberías DrenPro Infra® y SaniPro® de Tigre - ADS de hasta 1200mm están diseñadas para soportar cargas vivas tipo AASHTO H-25 (hasta 19 toneladas por eje) con un recubrimiento de 30 cm.

Para las tuberías Dren Pro Infra $^{\oplus}$ de Tigre - ADS de 1500mm el recubrimiento mínimo para cargas H-25 es de 60 cm. Esto asume un relleno adecuado bien compactado e incluye el material de subbase para instalaciones bajo pavimento.

- Durante la construcción, evite cargas de equipos pesados (> 90 toneladas por eje)sobre el tubo.
- Evite golpes directos a la tubería con los equipos de compactación.
- Las zonas expuestas a tráfico de vehículos de construcción pesados de entre 30 y 60 toneladas, requieren por lo menos 90 cm de recubrimiento sobre el tubo.
- Si el recubrimiento es insuficiente, amontone y compacte el material sobre la tubería para proporcionar la cobertura mínima necesaria para las cargas durante el proceso constructivo.

6- Profunidades de instalación máxima

La profundidad máxima de instalación depende en gran proporción al tipo y calidad de relleno con que ha sido instalada la tubería.

El diseño geométrico de la tubería corrugada hace que su comportamiento estructural como tubería flexible la haga más resistente y efectiva en comparación a otras tuberías para instalaciones a grandes profundidades.

Contáctese con el Departamento de Ingeniería de Tigre-ADS en caso de requerir la revisión de profundidades admisibles de algún proyecto en particular.

7- Piezas especiales y conexiones

Tigre - ADS ofrece todo una gama de accesorios, con el fin de otorgar versatilidad en el diseño de sistemas con productos Tigre - ADS y también permite complementarse con otras tecnologías tales como PVC y concreto.

Los accesorios Tigre - ADS estándar incluyen tees, codos, yees reductores, tapones y coplas entre otros tipos de conexiones.

Además, contamos con un departamento de desarrollo de piezas especiales, que permite fabricar uniones, acoples, tees, reducciones y todo tipo de piezas especiales según la necesidad del proyecto.

Todos los accesorios Tigre - ADS están disponibles con sistemas de unión compatibles con la tubería usada en cada uno de los proyectos.

Los empalmes a colectores o uniones domiciliarias se pueden llevar a cabo usando el accesorio "Tee Wye", fabricado en PEAD inyectado. Estas son colocadas usando procedimientos de instalación normales para las uniones de tubos Tigre - ADS.

8- Conexiones y Reparación en Obra

Las conexiones de terreno pueden ser necesarias para completar tramos o para reparaciones de tubos dañados durante la construcción. Las conexiones y reparaciones en obra deben ser realizadas con acoples compatibles con el diseño general del proyecto.

Los siguientes métodos son aplicables tanto para conexiones en terreno como para reparaciones:

8.1 Reparación a Sistemas Herméticos a Agregados Gruesos

Para reparaciones en tuberías con un área dañada menor al 25% del diámetro del tubo y en zonas sin tráfico, utilizar una copla abrazadera o split coupler.

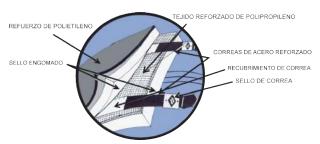
En este caso, coloque la copla alrededor del tubo, centrándola en el área dañada y ajustar con las amarras de nylon.

Si el daño excede los criterios anteriores o si el tubo está bajo pavimento, corte y reemplace una sección del tubo dañado, coloque una copla abrazadera (split coupler) en cada extremo expuesto de la nueva sección de tubo en la zanja y asegure las coplas con amarres de nylon.

8.2 Reparación en Sistemas Herméticos al Agua

Para sistemas con hermeticidad al agua y siempre que el diámetro lo permita, cualquier tubo dañado debe ser removido y reparado usando Coplas de Reparación con hermeticidad.

En este caso, el tubo debe ser cortado más allá del área dañada y removido. Colocar empaques de valle en cada extremo de la línea que se va a reparar y en la nueva sección de tubo cortado que va a ser acomodada. Colocar Coplas de Reparación en los extremos de la línea que se va a reparar y deslizarlos hacia adentro para permitir el libre paso de la sección de reemplazo. Insertar la sección de reemplazo y deslizar nuevamente los acoples para lograr la junta hermética al agua en ambos lados. Los extremos del tubo deben estar limpios y libres de escombros. Ambas gomas a instalar deben ser orientadas, considerando el sentido de desplazamiento de la copla de reparación.


Los extremos del tubo deben estar limpios y libres de escombros. Ambas gomas a instalar deben ser orientadas, considerando el sentido de desplazamiento de la copla de reparación.

Otra alternativa en caso que se quiera cubrir secciones pequeñas de reparación, es el cople bituminoso para sello externo de tuberías o cople mar-mac. Este cople tiene material bituminoso que se adhiere a la parte dañada del tubo. Una vez que el acople esta en su lugar, las bandas de amarre son apretadas para proporcionar hermeticidad al agua. Siempre instalar estas coplas según las recomendaciones del fabricante.

Para la aplicación de otros métodos tales como sellos internos, y aplicación puntual de soldadura por extrusión, consulte al Departamento Técnico de Tigre - ADS.

9- Chequeos post instalación

Generalmente, no es necesaria ninguna verificación de post-instalación para la tuberías DrenPro Infra[®], DrenPro HD[®] y SaniPro[®], sin embargo, en las tuberías de 750mm y más, es una buena práctica realizar una inspección visual para asegurarse de que se ha logrado un buen alineamiento y pendiente, y que no existe una deflexión excesiva de los tubos.

Es importante señalar que bajo condiciones normales, cualquier deflexión será notada dentro de los primeros 30 días después de la instalación y relleno, y generalmente después de los 3-7 días la mayoría de las deflexiones (aproximadamente 90-95%) serán notadas. Esto permite al inspector la oportunidad de revisar la tubería inmediatamente después de la instalación con la posibilidad de notar las deficiencias antes de terminar el proyecto.

9.1 Inspección Visual

Normalmente una inspección visual es todo lo necesario para determinar una alineación inapropiada o una deflexión excesiva.

Si se determina que es necesario realizar pruebas adicionales de terreno, puede utilizarse alguno de los siguientes métodos.

9.2 Infiltración / Exfiltración

Un ensayo de infiltración / exfiltración, es un método sencillo y fácil para asegurar un adecuado desempeño de las juntas. Para realizar un ensayo de infiltración/ exfiltración, se puede probar llenando con agua un tramo de tubería instalada de cámara a cámara y midiendo el nivel del agua inmediatamente después de llenar.

Se deja pasar un cierto período de tiempo (según reglamentación) y se verifica la caída en el nivel del agua original, comparándolo con el nivel de pérdida admisible establecido para el proyecto.

9.3 Pruebas a Baja Presión de Aire

Esta prueba es usualmente para sistemas donde las normas de desempeño requieren juntas con hermeticidad al agua.

Después de que el tubo ha sido colocado y rellenado, cada sección de tubería entre cámaras de inspección puede ser probado con un ensayo de aire a baja presión. Las juntas individuales pueden ser también ensayadas con un equipo adecuado.

La Norma ASTM F1417 puede ser usada para ensayar con aire estos sistemas. El ensayo debe ser realizado entre cámaras o para juntas individuales. Las estructuras y accesorios prefabricados no deben ser ensayados para evitar dañar estos componentes.

ASTM F1417 especifica que una presión de aire de 3.5 psi debe ser mantenida por un tiempo definido de acuerdo a la longitud del tramo a probar y el diámetro del tubo instalado con una pérdida de presión máxima de 1.0 psi.

9.4 Pruebas de Deformación

Cuando se requiera, la deformación de la tubería puede ser determinada dentro de los primeros 30 días de instalación insertando un mandril a través del tubo instalado.

Las pruebas de mandril sólo arrojan resultados de aprobación o reprobación y estos pudieran ser mal interpretados, por lo cual antes de excavar para reparar, determinar si el problema es causado por presencia de material foráneo en el tubo, juntas desalineadas u otra situación similar.

10- Servicio Técnico Tigre - ADS en Terreno

Tigre - ADS pone a su disposición un grupo humano de primer nivel compuesto por profesionales especializados, encargados de asesorarlo en la instalación de nuestros productos.

Contamos con un moderno equipamiento propio, único en Chile, para la realización de la prueba de hermeticidad neumática según Norma ASTM F1417 para tuberías con unión campana - espiga.

Capacitamos y actualizamos al personal sub-contratado en la correcta instalación y manipulación de nuestras soluciones de PEAD.

11- Normas y Especificaciones

Todos nuestros productos cumplen con los requerimientos de fabricación exigidos por las normativas nacionales e internacionales vigentes, las que a su vez son controladas tanto internamente como por laboratorios de control de calidad externos.

La siguiente es una lista de las principales especificaciones de diseño y desempeño para las tuberías DrenPro de Tigre - ADS.

ASTM F2947-14, NCh 3350/1, NTC6115, NB1216021 Establece a las especificaciones y métodos de ensayos vigentes para tubos estructurales corrugados de PEAD, cuya composición de diseño doble pared (lisa en el interior, corrugada exterior), y esta norma cumple para aplicaciones sanitarias.

AASHTO M252 Establece las especificaciones y métodos de prueba de los tubos corrugados de polietileno de alta densidad en diámetros de 75 mm a 250 mm, las uniones y sus accesorios, para ser utilizados en sistemas de drenaje subterráneo, pluvial y en sistemas de drenaje superficial (alcantarillado vial), donde el suelo proporcione el soporte para las paredes de la tubería flexible.

AASHTO M294 Establece las especificaciones y métodos de ensayo de los tubos corrugados de polietileno de alta densidad, las uniones y sus accesorios, para ser utilizados en aplicaciones de drenaje tanto superficial como subterráneo en diámetros de 300 mm a 1500 mm.

AASHTO F2306, NB1216023 Especificación estándar para tubería de 300 mm a 1500 mm de pared de polietileno corrugado anular y accesorios para aplicaciones de drenaje pluvial y subterráneo por gravedad.

ASTM F405 Esta especificación cubre los requerimientos y métodos de prueba para los materiales, dimensiones, marcado, fabricación, elongación, fragilidad, rigidez del tubo y perforaciones para tubos corrugados de polietileno y sus accesorios en tamaños nominales de 75 mm a 150 mm.

ASTM F667 Esta especificación cubre los requerimientos y métodos de prueba para materiales, mano de obra, dimensiones, perforaciones, rigidez del tubo, elongación, resistencia a la separación de juntas, calidad del polietileno extruido, fragilidad, pegado y marcado de tubería y accesorios de polietileno corrugado. Abarca los sieguientes diámetros nominales: 200mm, 250mm, 300mm, 375 mm, 450mm y 600mm.

ASTM D3212 Especificación estándar sobre juntas para tubería de plástico para drenajes y drenaje sanitario con sellos elastoméricos flexibles.

ASTM D3350 Especificación estándar para los materiales de las tuberías plásticas de polietileno y fittings.

NCH 2465 Tuberías corrugadas y accesorios de material termoplástico para obras de alcantarillado - Requisitos.

AASHTO Sección 18 Sistemas de Interacción Suelo-Tubería Termop-lástica.

AASHTO Sección 12 Especificaciones LRFD- Estructuras Enterradas y Re-vestimiento de Túneles.

AASHTO Sección 30 Tubería Termoplástica ASTM F405 Especificación Estándar para Tubería y Accesorios Corrugados de Polietileno de Gran Diámetro.

ASTM F477 Especificación Estándar para Sellos Elastomérico (Empa-ques) para Juntas de Tubería Plástica.

ASTM F1417 Método de Ensayo Estándar para Aceptación de Instalación de Líneas Plásticas de Alcantarillado de Gravedad Usando Aire a Baja Presión.

12. Apéndice

Los siguientes documentos relacionados deben ser consultados para información adicional relacionada con el uso de Tuberías Tigre - ADS. Estos documentos pueden ser obtenidos con un representante autorizado de Tiare - ADS.

Nota de Producto: SaniPro[®].

Nota de Producto: DrenPro Infra®.

Ficha Técnica: Perforaciones estándar para tubos Tigre-ADS.

Ficha Técnica: Recubrimientos mínimo.

Ficha Técnica: Flotación de tubos.

Ficha Técnica: Capacidad de Flujo.

Ficha Técnica: Resistencia a la abrasión.

Ficha Técnica: Diseños de sistemas para detención y retención retención aguas

lluvia y pluvial.

Ficha Técnica: Instalación de tubería Tigre-ADS DrenPro Infra[®] y SaniPro[®] para drenajes Sanitarios y Puviales.

TABLA DE ESPECIFICACIÓN TÉCNICA PARA TUBERÍA DRENPRO INFRA® Y SANIPRO® TIGRE-ADS ESTÁNDAR

DRENPRO INFRA®

Diámetro nominal	Diámetro externo promedio	Peso aproximado por tubo(*)	Rigidez del tubo mínima al 5% de deflexión(**)	Largo de tubos para Chile DrenPro Infra®
100 mm	120 mm	5 kg	345 kPa	6,096 m
150 mm	176 mm	10 kg	345 kPa	6,096 m
200 mm	232 mm	15 kg	345 kPa	6,096 m
250 mm	290 mm	20 kg	345 kPa	6,096 m
300 mm	367 mm	35 kg	345 kPa	6,096 m
375 mm	445 mm	45 kg	290 kPa	6,096 m
450 mm	540 mm	60 kg	275 kPa	5,791 m
600 mm	717 mm	95 kg	235 kPa	5,767 m
750 mm	900 mm	145 kg	200 kPa	6,004 m
900 mm	1044	160 kg	155 kPa	5,913 m
1000 mm	1148 mm	205 kg	145 kPa	6,096 m
1200 mm	1367 mm	280 kg	135 kPa	6,096 m
1500 mm	1684 mm	370 kg	105 kPa	5,944 m

SANIPRO®

Diámetro	Diámetro externo	Peso aproximado	Rigidez s norm		Largo de tubos para Chile	
nominal	promedio	por tubo(*)	ASTM D2412	ISO 9969	SaniPro®	
300 mm	365 mm	35 kg	372 kPa	SN 8	6,096 m	
375 mm	446 mm	50 kg	310 kPa	SN 8	6,096 m	
450 mm	546 mm	65 kg	297 kPa	SN 8	5,791 m	
600 mm	719 mm	100 kg	262 kPa	SN 4	5,767 m	
750 mm	898 mm	150 kg	228 kPa	SN 4	6,004 m	
900 mm	1050 mm	180 kg	200 kPa	SN 4	5,913 m	
1000 mm	1147 mm	230 kg	179 kPa	SN 4	6,096 m	
1200 mm	1374 mm	310 kg	152 kPa	SN 4	6,096 m	

Notas:	

Notas:			

TIGRE-ADS Soluciones en en Tuberías Corrugadas de PEAD

Plantas de Producción

Panamericana Norte 20.500 | Lampa | Santiago | Chile. Rua Penwalt 270 | Río Claro | São Paulo | Brasil | Cep 13505-650. Rod. Divaldo Suruagy Km 424 | Marechal Deodoro Maceió | Alagoas | Brasil.

Contactos Comerciales Tigre-ADS

Panamericana Norte 20.500 | Lampa | Santiago | Chile | Tel.: +56(2) 24130001. Avenida Dr. Cardoso de Melo 1.750 | 10° Andar | Vila Olimpia | São Paulo | Brasil | CEP 0548000 | Tel.: +55(11) 3021-6500.

Av. Carlos Roberto Hansen S/N | Lotización Industrial El Lúcumo | Lurin | Lima | Perú |
Móvil.: +51(9) 6079 4305 | +51(9) 8058 4058 | +51(9) 6074 6788.

Parque Industrial Santo Domingo | Av. Troncal de Occidente N° 18-76 Bodega 1 |
Manzana E | Cundinamarca | Mosquera | Colombia | Tel.: +57 (1) 8941050.

Uruguay 775 8° Piso | (C1015ABO) | Buenos Aires | Argentina |
Tel.: +54(11) 21530197 | +54(11) 21530119 | Móvil: +54 (911) 66066794.

Contacto vía e-mail en Sudámerica

infoargentina@tigre-ads.com tigre-adsbrasil@tigre-ads.com tigre-adschile@tigre-ads.com infocolombia@tigre-ads.com infoperu@tigre-ads.com

infobolivia@tigre-ads.com infoecuador@tigre-ads.com infoparaguay@tigre-ads.com infouruguay@tigre-ads.com